If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2+5r-23=0
a = 1; b = 5; c = -23;
Δ = b2-4ac
Δ = 52-4·1·(-23)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-3\sqrt{13}}{2*1}=\frac{-5-3\sqrt{13}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+3\sqrt{13}}{2*1}=\frac{-5+3\sqrt{13}}{2} $
| 3x+26=107 | | -12x+24=-36 | | 0.75x+15=3(x-4 | | .5(y+2)=23 | | -4(2x-7)=-60 | | 2w=(1.25w+6) | | 1/2(2d-4)+8=20 | | 323=19r | | | | | | | | 26=v+13 | | x(3x-29)=75 | | 3x=8.4-8x-22.2+x | | 18x^2-30x-36=0 | | 12+2y=50 | | 8x2+4x=4 | | 8x2+4x=4 | | v2+ 13=17 | | 154/143=x/130 | | 18x^2-30x-50=0 | | 14/x=77/154 | | x/77=55/55 | | t/3+t/2=15 | | 3.33x=100 | | x/77=55/56 | | (a+4)/4=16/4 | | 3v+8=–10 | | 84/14=48/x | | 3x‐6+7×=6x‐10‐10x | | 3x-5=-9x+8 | | 6.66x=100 |